717 research outputs found

    Learning mixtures of separated nonspherical Gaussians

    Full text link
    Mixtures of Gaussian (or normal) distributions arise in a variety of application areas. Many heuristics have been proposed for the task of finding the component Gaussians given samples from the mixture, such as the EM algorithm, a local-search heuristic from Dempster, Laird and Rubin [J. Roy. Statist. Soc. Ser. B 39 (1977) 1-38]. These do not provably run in polynomial time. We present the first algorithm that provably learns the component Gaussians in time that is polynomial in the dimension. The Gaussians may have arbitrary shape, but they must satisfy a ``separation condition'' which places a lower bound on the distance between the centers of any two component Gaussians. The mathematical results at the heart of our proof are ``distance concentration'' results--proved using isoperimetric inequalities--which establish bounds on the probability distribution of the distance between a pair of points generated according to the mixture. We also formalize the more general problem of max-likelihood fit of a Gaussian mixture to unstructured data.Comment: Published at http://dx.doi.org/10.1214/105051604000000512 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

    Full text link
    Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests that, sometimes, increasing depth can speed up optimization. The effect of depth on optimization is decoupled from expressiveness by focusing on settings where additional layers amount to overparameterization - linear neural networks, a well-studied model. Theoretical analysis, as well as experiments, show that here depth acts as a preconditioner which may accelerate convergence. Even on simple convex problems such as linear regression with p\ell_p loss, p>2p>2, gradient descent can benefit from transitioning to a non-convex overparameterized objective, more than it would from some common acceleration schemes. We also prove that it is mathematically impossible to obtain the acceleration effect of overparametrization via gradients of any regularizer.Comment: Published at the International Conference on Machine Learning (ICML) 201

    Learning Topic Models - Going beyond SVD

    Full text link
    Topic Modeling is an approach used for automatic comprehension and classification of data in a variety of settings, and perhaps the canonical application is in uncovering thematic structure in a corpus of documents. A number of foundational works both in machine learning and in theory have suggested a probabilistic model for documents, whereby documents arise as a convex combination of (i.e. distribution on) a small number of topic vectors, each topic vector being a distribution on words (i.e. a vector of word-frequencies). Similar models have since been used in a variety of application areas; the Latent Dirichlet Allocation or LDA model of Blei et al. is especially popular. Theoretical studies of topic modeling focus on learning the model's parameters assuming the data is actually generated from it. Existing approaches for the most part rely on Singular Value Decomposition(SVD), and consequently have one of two limitations: these works need to either assume that each document contains only one topic, or else can only recover the span of the topic vectors instead of the topic vectors themselves. This paper formally justifies Nonnegative Matrix Factorization(NMF) as a main tool in this context, which is an analog of SVD where all vectors are nonnegative. Using this tool we give the first polynomial-time algorithm for learning topic models without the above two limitations. The algorithm uses a fairly mild assumption about the underlying topic matrix called separability, which is usually found to hold in real-life data. A compelling feature of our algorithm is that it generalizes to models that incorporate topic-topic correlations, such as the Correlated Topic Model and the Pachinko Allocation Model. We hope that this paper will motivate further theoretical results that use NMF as a replacement for SVD - just as NMF has come to replace SVD in many applications

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs
    corecore